A deluxe FETI-DP algorithm for a hybrid staggered discontinuous Galerkin method for H(curl)-elliptic problems
نویسندگان
چکیده
Convergence theories and a deluxe dual and primal finite element tearing and interconnecting algorithm are developed for a hybrid staggered DG finite element approximation of H(curl) elliptic problems in two dimensions. In addition to the advantages of staggered DG methods, the basis functions of the new hybrid staggered DG method are all locally supported in the triangular elements, and a Lagrange multiplier approach is applied to enforce the global connections of these basis functions. The interface problem on the Lagrange multipliers is further reduced to the resulting problem on the subdomain interfaces, and a dual and primal finite element tearing and interconnecting algorithm with an enriched weight factor is then applied to the resulting problem. Our algorithm is shown to give a condition number bound of C.1C log.H=h//, independent of the two parameters, whereH=h is the number of triangles across each subdomain. Numerical results are included to confirm our theoretical bounds. Copyright © 2013 John Wiley & Sons, Ltd.
منابع مشابه
A FETI-DP Preconditioner for a Composite Finite Element and Discontinuous Galerkin Method
In this paper a Nitsche-type discretization based on discontinuous Galerkin (DG) method for an elliptic two-dimensional problem with discontinuous coefficients is considered. The problem is posed on a polygonal region Ω which is a union of N disjoint polygonal subdomains Ωi of diameter O(Hi). The discontinuities of the coefficients, possibly very large, are assumed to occur only across the subd...
متن کاملParallel scalability of a FETI–DP mortar method for problems with discontinuous coefficients
We consider elliptic problems with discontinuous coefficients discretized by FEM on non-matching triangulations across the interface using the mortar technique. The resulting discrete problem is solved by a FETI–DP method using a preconditioner with special scaling described in Dokeva, Dryja and Proskurowski [to appear]. Experiments performed on hundreds of processors show that this FETI–DP mor...
متن کاملA FETI-DP Method for the Mortar Discretization of Elliptic Problems with Discontinuous Coefficients
Second order elliptic problems with discontinuous coefficients are considered. The problem is discretized by the finite element method on geometrically conforming non-matching triangulations across the interface using the mortar technique. The resulting discrete problem is solved by a FETI-DP method. We prove that the method is convergent and its rate of convergence is almost optimal and indepe...
متن کاملA Neumann-dirichlet Preconditioner for a Feti-dp Formulation with Mortar Methods
In this article, we review a dual-primal FETI (FETI-DP) method with mortar methods. The mortar matching condition is used as the continuity constraints for the FETI-DP formulation. A Neumann-Dirichlet preconditioner is investigated and it is shown that the condition number of the preconditioned FETI-DP operator for the two-dimensional elliptic problem is bounded by C maxi=1,...,N{(1 + log (Hi/h...
متن کاملUN CO RR EC TE D PR O O F 1 BDDC for Higher - Order Discontinuous Galerkin 2 Discretizations 3
A Balancing Domain Decomposition by Constraints (BDDC) method is presented 13 for the solution of a discontinuous Galerkin (DG) discretization of a second-order 14 elliptic problem in two dimensions. BDDC was originally introduced in [8] for the 15 solution of continuous finite element discretizations. Mandel and Dohrmann [13] 16 later proved a condition number bound of κ ≤ C(1 + log(H/h))2 for...
متن کامل